使用topic召回的时候,先要做平滑,发现对先验概率理解不够,查资料补充了一下知识,特此记录。
先验概率与后验概率,简单的说:先验概率是由因求果中的因,而后验概率,由果寻因中的因。
先验概率是在缺乏某个事实的情况下描述一个变量; 而后验概率是在考虑了一个事实之后的条件概率. 先验概率通常是经验丰富的专家的纯主观的估计。后验概率可以根据通过Bayes定理, 用先验概率和似然函数计算出来.
后验概率是基于新的信息,修正原来的先验概率后所获得的更接近实际情况的概率估计。
先验概率和后验概率是相对的。如果以后还有新的信息引入,更新了现在所谓的后验概率,得到了新的概率值,那么这个新的概率值被称为后验概率。
利用过去历史资料计算得到的先验概率,称为客观先验概率;
当历史资料无从取得或资料不完全时,凭人们的主观经验来判断而得到的先验概率,称为主观先验概率。
后验概率是指通过调查或其它方式获取新的附加信息,利用贝叶斯公式对先验概率进行修正,而后得到的概率。
贝叶斯公式:
先验概率不是根据有关自然状态的全部资料测定的,而只是利用现有的材料(主要是历史资料)计算的;后验概率使用了有关自然状态更加全面的资料,既有先验概率资料,也有补充资料;
先验概率的计算比较简单,没有使用贝叶斯公式;而后验概率的计算,要使用贝叶斯公式,而且在利用样本资料计算逻辑概率时,还要使用理论概率分布,需要更多的数理统计知识。
一口袋里有3只红球、2只白球,采用不放回方式摸取,求:
⑴ 第一次摸到红球(记作A)的概率;
⑵ 第二次摸到红球(记作B)的概率;
⑶ 已知第二次摸到了红球,求第一次摸到的是红球的概率。
解:⑴ P(A)=3/5,这就是先验概率;
⑵ P(B)=P(A)P(B|A)+P(A逆)P(B|A逆)=3/5
⑶ P(A|B)=P(A)P(B|A)/P(B)=1/2,这就是后验概率。